Seminar

20240905_꼬리노드_윤준호.pptx

Adaptive Attention-Based Graph Representation Learning to Detect Phishing Accounts on the Ethereum Blockchain

발표자: 윤준호

Sun, H., Liu, Z., Wang, S., & Wang, H. (2024). Adaptive attention-based graph representation learning to detect phishing accounts on the Ethereum blockchain. IEEE Transactions on Network Science and Engineering.  

20240816_랩세미나_이현주.pptx

Differentially Private Diffusion Models

발표자: 이현주

Dockhorn, T., Cao, T., Vahdat, A., & Kreis, K. (2022). Differentially private diffusion models. arXiv preprint arXiv:2210.09929. 

20240809_labseminar_최석훈.pptx

chain-of-thought prompting elicits reasoning in large language models

발표자: 최석훈

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., ... & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35, 24824-24837. 

20240726_랩세미나_윤준호.pptx

gnn-rag: graph neural retrieval for large language model reasoning

발표자: 윤준호

Mavromatis, C., & Karypis, G. (2024). GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning. arXiv preprint arXiv:2405.20139. 

20240719_labseminar_최수환.pptx

THe superising effectiveness of ppo in cooperative multi-agent games

발표자: 최수환

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., & Wu, Y. (2022). The surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information Processing Systems, 35, 24611-24624. 

20240607_랩세미나_강준하.pptx

Hierarchical prototype networks for continual graph representation learning

발표자: 강준하

Zhang, X., Song, D., & Tao, D. (2022). Hierarchical prototype networks for continual graph representation learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4), 4622-4636. 

20240517_labseminar_최석훈.pptx

Few-shot class-incremental audio classification using dynamically expanded classifier with self-attention modified prototypes

발표자: 최석훈

Li, Y., Cao, W., Xie, W., Li, J., & Benetos, E. (2023). Few-shot Class-incremental Audio Classification Using Dynamically Expanded Classifier with Self-attention Modified Prototypes. IEEE Transactions on Multimedia. 

20240503_랩세미나_백무근.pptx

DiFfusion models beat gans on image synthesis

발표자: 백무근

Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in neural information processing systems, 34, 8780-8794.

20240403_labseminar_최수환.pptx

PROXIMAL POLICY OPTIMIZATION ALGORITHMS

발표자: 최수환

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347. 

20240320_랩세미나_이현주_DDPM.pptx

Denoising diffusion probabilistic models

발표자: 이현주

Ho, J., Ajay J., & Pieter A. (2020). Denoising Diffusion Probabilistic Models. Advances in neural information processing systems, 33, 6840-6851. 

20240315_랩세미나_강준하.pptx

A graph neural network-based bearing fault detection method

발표자: 강준하

Xiao, L., Yang, X., & Yang, X. (2023). A graph neural network-based bearing fault detection method. Scientific Reports, 13(1), 5286.

20240221_랩세미나_이진희.pptx

Hifi-gan: Generative adversarial networks for efficeint and high fidelity speech synthesis

발표자: 이진희

Jungil, K., Jaehyeon, K. & Jaekyoung, B. (2020). HiFi-GAN: Generative Adversarial Networks for Efficeint and High Fidelity Speech Synthesis. Advances in neural information processing systems, 33, 17022-17033.

20240214_랩세미나_백무근.pptx

Denoising diffusion probabilistic models

발표자: 백무근

Ho, J., Ajay J., & Pieter A. (2020). Denoising Diffusion Probabilistic Models. Advances in neural information processing systems, 33, 6840-6851. 

20240125_labseminar_최수환_v2.pptx

Multi-agent deep reinforcement learning: a survey

발표자: 최수환

Gronauer, S., & Diepold, K. (2022). Multi-agent deep reinforcement learning: a survey. Artificial Intelligence Review, 1-49. 

20240118_랩세미나_이현주_Prototype-Guided Memory Replay for Continual Learning.pptx

Prototype-guided memory replay for continual learning

발표자: 이현주

Ho, S., Liu, M., Du, L., Gao, L., & Xiang, Y. (2023). Prototype-Guided Memory Replay for Continual Learning. IEEE Transactions on Neural Networks and Learning Systems. 

20240103_랩세미나_강준하.pptx

Genetic-GNN: Evolutionary architecture search for graph neural networks

발표자: 강준하

Shi, M., Tang, Y., Zhu, X., Huang, Y., Wilson, D., Zhuang, Y., & Liu, J. (2022). Genetic-GNN: Evolutionary architecture search for graph neural networks. Knowledge-Based Systems, 247, 108752. 

20231227_랩세미나_윤준호.pptx

Attention is all you need

발표자: 윤준호

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. 

20231121_랩세미나_이현주_Tristounet Triplet loss for Speaker Turn Embedding.pptx

TRISTOUNET: Triplet loss for speaker turn embedding

발표자: 이현주

Bredin, H. (2017, March). Tristounet: triplet loss for speaker turn embedding. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5430-5434). IEEE. 

20231107_랩세미나_강준하.pptx

Graph autoencoder-based unsupervised outlier detection

발표자: 강준하

Du, X., Yu, J., Chu, Z., Jin, L., & Chen, J. (2022). Graph autoencoder-based unsupervised outlier detection. Information Sciences, 608, 532-550. 

20231010_랩세미나_윤준호.pptx

Web2Vec: Phishing Webpage Detection Method Based on Multidimensional Features Driven by Deep Learning

발표자: 윤준호

Feng, J., Zou, L., Ye, O., & Han, J. (2020). Web2vec: Phishing webpage detection method based on multidimensional features driven by deep learning. IEEE Access, 8, 221214-221224.